Analyzing Bagging
نویسندگان
چکیده
Bagging is one of the most effective computationally intensive procedures to improve on unstable estimators or classifiers, useful especially for high dimensional data set problems. Here we formalize the notion of instability and derive theoretical results to analyze the variance reduction effect of bagging (or variants thereof) in mainly hard decision problems, which include estimation after testing in regression and decision trees for regression functions and classifiers. Hard decisions create instability, and bagging is shown to smooth such hard decisions, yielding smaller variance and mean squared error. With theoretical explanations, we motivate subagging based on subsampling as an alternative aggregation scheme. It is computationally cheaper but still shows approximately the same accuracy as bagging. Moreover, our theory reveals improvements in first order and in line with simulation studies. In particular, we obtain an asymptotic limiting distribution at the cube-root rate for the split point when fitting piecewise constant functions. Denoting sample size by n, it follows that in a cylindric neighborhood of diameter n−1/3 of the theoretically optimal split point, the variance and mean squared error reduction of subagging can be characterized analytically. Because of the slow rate, our reasoning also provides an explanation on the global scale for the whole covariate space in a decision tree with finitely many splits.
منابع مشابه
Neighbourhood sampling in bagging for imbalanced data
Various approaches to extend bagging ensembles for class imbalanced data are considered. First, we review known extensions and compare them in a comprehensive experimental study. The results show that integrating bagging with under-sampling is more powerful than over-sampling. They also allow to distinguish Roughly Balanced Bagging as the most accurate extension. Then, we point out that complex...
متن کاملBagging Random Tree for Analyzing Breast Cancer Survival
Building the survivability prediction models is a challenging task because they provide an important approach to assessing risk and prognosis. In this paper, we investigated the performance of combining of the Bagging with several weak learners to build 5-accurate breast cancer survivability prediction models from the Srinagarind hospital database in Thailand. These models could assist medical ...
متن کاملInvestigating the Effect of Underlying Fabric on the Bagging Behaviour of Denim Fabrics (RESEARCH NOTE)
Underlying fabrics can change the appearance, function and quality of the garment, and also add so much longevity of the garment. Nowadays, with the increasing use of various types of fabrics in the garment industry, their resistance to bagging is of great importance with the aim of determining the effectiveness of textiles under various forces. The current paper investigated the effect of unde...
متن کاملPerformance of Porous Pavement Containing Different Types of Pozzolans
Underlying fabrics can change the appearance, function and quality of the garment, and also add so much longevity of the garment. Nowadays, with the increasing use of various types of fabrics in the garment industry, their resistance to bagging is of great importance with the aim of determining the effectiveness of textiles under various forces. The current paper investigated the effect of unde...
متن کاملImproving Adaptive Bagging Methods for Evolving Data Streams
We propose two new improvements for bagging methods on evolving data streams. Recently, two new variants of Bagging were proposed: ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a change detector to decide when to discard underperforming ensemble members. We improve ADWIN Bagging using Hoeffding Adaptive...
متن کامل